The Nested Dirichlet Process

نویسنده

  • Abel Rodriguez
چکیده

In multicenter studies, subjects in different centers may have different outcome distributions. This article is motivated by the problem of nonparametric modeling of these distributions, borrowing information across centers while also allowing centers to be clustered. Starting with a stick-breaking representation of the Dirichlet process (DP), we replace the random atoms with random probability measures drawn from a DP. This results in a nested Dirichlet process (nDP) prior, which can be placed on the collection of distributions for the different centers, with centers drawn from the same DP component automatically clustered together. Theoretical properties are discussed, and an efficient MCMC algorithm is developed for computation. The methods are illustrated using a simulation study and an application to quality of care in US hospitals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hybrid Nested/Hierarchical Dirichlet Process and its Application to Topic Modeling with Word Differentiation

The hierarchical Dirichlet process (HDP) is a powerful nonparametric Bayesian approach to modeling groups of data which allows the mixture components in each group to be shared. However, in many cases the groups themselves are also in latent groups (categories) which may impact the modeling a lot. In order to utilize the unknown category information of grouped data, we present the hybrid nested...

متن کامل

Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work

Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...

متن کامل

Nested Hierarchical Dirichlet Process for Nonparametric Entity-Topic Analysis

The Hierarchical Dirichlet Process (HDP) is a Bayesian nonparametric prior for grouped data, such as collections of documents, where each group is a mixture of a set of shared mixture densities, or topics, where the number of topics is not fixed, but grows with data size. The Nested Dirichlet Process (NDP) builds on the HDP to cluster the documents, but allowing them to choose only from a set o...

متن کامل

Nested Hierarchical Dirichlet Processes for Multi-Level Non-Parametric Admixture Modeling

Dirichlet Process(DP) is a Bayesian non-parametric prior for infinite mixture modeling, where the number of mixture components grows with the number of data items. The Hierarchical Dirichlet Process (HDP), often used for non-parametric topic modeling, is an extension of DP for grouped data, where each group is a mixture over shared mixture densities. The Nested Dirichlet Process (nDP), on the o...

متن کامل

Hierarchical Topic Models and the Nested Chinese Restaurant Process

We address the problem of learning topic hierarchies from data. The model selection problem in this domain is daunting—which of the large collection of possible trees to use? We take a Bayesian approach, generating an appropriate prior via a distribution on partitions that we refer to as the nested Chinese restaurant process. This nonparametric prior allows arbitrarily large branching factors a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006